
Antonio Fariña



Motivación

Guión de la exposición



Wavelet trees



Wavelet trees sobre códigos densos WTDC



Arrays de sufijos



Arrays de sufijos comprimidos



Otros índices y trabajo futuro



Índices invertidos

• ETDC + [compresor | self-index]

Antonio Fariña

Codificaciones orientadas a palabras
Otros Usos:: DCC’08

Fariña, A; Navarro, G. y Parama, J. Word-based
Statistical Compressors as Natural Language
Compression Boosters. Data compression
conference. Snowbird, UT. 2008.

Antonio Fariña

Outline



IntroductionIntroduction


Related workRelated work


Text preprocessingText preprocessing


General purpose compressionGeneral purpose compression


Boosting compressionBoosting compression


Boosting indexingBoosting indexing


Experimental resultsExperimental results


ConclusionsConclusions

Antonio Fariña



We show that most of the state-of-the-art compressors
(bzip2, those from the Ziv-Lempel family and the
predictive PPM-based ones) improve their
performance if:

— They compress not the original text, but its compressed
representation obtained by a word-based byte-oriented
statistical compressor.



Example:
1. Using End-Tagged Dense Code (ETDC) as a

preprocessing step,
2. and then applying others (PPM,…)

Introduction

Antonio Fariña

Original Text (T)

Introduction

To be or not to
be …

ETDC, TH
Compressor

…|127|200|100|
255|189|25|…

Compressed Text
ETDC(T), TH(T)

Bzip2, Gzip, PPM
Compressor

00100010101
Final Compressed Text

X(ETDC(T))

ALTERNATIVE
representation of

the text
Byte oriented
compression

To be or not to
be …

Bzip2, Gzip, PPM
Compressor 00100010101

X(T)

Better performance (Compression ratio, compression speed and decompression speed
than

Original Text (T)

Antonio Fariña



It also improves text indexing.

— Text compression has been recently integrated with text

indexing.

— Self-Indexes: It is possible to construct an index which takes

space proportional to the compressed text, replaces it, and

permits fast indexed searching on it.

— Examples:



Succinct Suffix Array (SSA) and



Alphabet-Friendly FM-index (AF-FMindex)

Introduction

Antonio Fariña

Original Text (T)

Introduction

To be or not to
be …

TH
Compressor

…|127|200|100|
255|189|25|…

Compressed Text
TH(T)

Compresor
Bzip2, Gzip, PPM

00100010101ALTERNATIVE
representation of

the text

SSA or
AF-FM index

Indexed text

Byte oriented
compression

A self-index on the preprocessed text is smaller and faster for searching
than if applied directly on T

Antonio Fariña

Outline



IntroductionIntroduction


RelatedRelated workwork


TextText preprocessingpreprocessing


General General PurposePurpose compressioncompression


BoostingBoosting compressioncompression


BoostingBoosting indexingindexing


Experimental Experimental resultsresults


ConclusionsConclusions

Antonio Fariña



There exist several works based on performing
some text preprocessing

before applying general-

 purpose compressors.

— Mppm

from Adiego

and de la Fuente


1st Substitutes each original word with a 2-byte id.


2nd Applies PPM.

— Word replacing transformation

(Skibiński, et al., 2005)
replace original words by codewords, which index a static
dictionary (in addition to other transformations) + ppm.

— …

Related work

Antonio Fariña



There are also some works based on building a
self-index over compressed text.

— WFM-index

(Ferragina, 2006) builds a FM-index onto a text
compressed with Tagged Huffman.

— A simple alphabet-independent

FM-Index

(Grabowski, et
al., 2006) first applies a Huffman-compression and then a
Burrows-Wheeler transform over it. The resulting structure
can be regarded as an FM-index built over a binary
sequence.

Related work

Antonio Fariña

Outline



IntroductionIntroduction


RelatedRelated workwork


TextText preprocessingpreprocessing


General General PurposePurpose compressioncompression


BoostingBoosting compressioncompression


BoostingBoosting indexingindexing


Experimental Experimental resultsresults


ConclusionsConclusions

Antonio Fariña

Related work
Text preprocessing

Original Text (T)

To be or not to
be …

ETDC, TH
Compressor

00000000
11111111

Compressed Text
ETDC(T), TH(T)…

Bzip2, Gzip, PPM
Compressor

00100010101
Final Compressed Text

X(ETDC(T))

…|127|200|100|
255|189|25|…

Antonio Fariña

Semistatic compression



Statistical semistatic compression

— Association between source symbol  codeword

does not change across the text.

— Direct search is possible.

— ETDC, TH son posibles

Tagged Huffman:
•Worse

compression

ratio (around

35%)

•Suffix-free!!!

Antonio Fariña

Outline



IntroductionIntroduction


RelatedRelated workwork


TextText preprocessingpreprocessing


General General PurposePurpose compressioncompression


BoostingBoosting compressioncompression


BoostingBoosting indexingindexing


Experimental Experimental resultsresults


ConclusionsConclusions

Antonio Fariña

Related work
General purpose compression

Original Text (T)

To be or not to
be …

ETDC, TH
Compressor

Compressed Text
ETDC(T), TH(T)…

Bzip2, Gzip, PPM
Compressor

00100010101
Final Compressed Text

X(ETDC(T))

…|127|200|100|
255|189|25|…

Antonio Fariña

General purpose compression



As a PPM compressor we chose ppmdi.
— Uses a k-order modeler and a arithmetic encoder.



Bzip2
— Combines BWT, move-to-front, RLE, Huffman.



Ziv-Lempel
— Gzip

Antonio Fariña

Outline



IntroductionIntroduction


RelatedRelated workwork


TextText preprocessingpreprocessing


General General purposepurpose compressioncompression


BoostingBoosting compressioncompression


BoostingBoosting indexingindexing


Experimental Experimental resultsresults


ConclusionsConclusions

Antonio Fariña

Boosting compression



The byte values obtained by compressing a text T
 with a word-based byte-oriented compressor shows

that their frequencies are far from uniform.


The output of a word-based arithmetic bit-oriented
compressor displays a rather homogeneous
distribution.

Antonio Fariña



This idea led us to consider that the compressed file
ETDC(T)

(or TH(T)) was still compressible with a char-

based bit-oriented compressor.



However, this could not be a zero-order compressor,
because the zero-order entropy (H0

) of ETDC(T)

is too high
(around 7 bpc).



Instead, a deeper study of k-order entropy (Hk

) of both T
 and ETDC(T)

exposed some interesting properties of

ETDC.
— A k-order modeler gathers statistics of each symbol ci

by
looking at the k

symbols that precede ci

Boosting compression

Antonio Fariña

Plain Text Text compressed with ETDC

k Hk contexts k Hk contexts k Hk contexts K Hk contexts

0 4.888 1 8 0.972 6,345,025 0 7.137 1 8 0.132 12,531,512

1 3.591 96 9 0.837 9,312,075 1 6.190 256 9 0.099 12,854,938

2 2.777 4,197 10 0.711 12,647,531 2 4.642 46,027 10 0.082 13,080,690

3 2.098 51,689 11 0.595 16,133,250 3 2.601 1,853,531 11 0.072 13,252,088

4 1.668 299,677 12 0.493 19,598,218 4 1.190 6,191,411 12 0.061 13,401,719

5 1.430 951,177 13 0.406 22,900,151 5 0.566 9,396,976 13 0.056 13,531,668

6 1.264 2,133,567 33 0.025 43,852,665 6 0.308 11,107,361 49 0.001 14,939,845

7 1.118 3,931,575 50 0.011 46,075,896 7 0.187 12,015,748 50 0.001 14,946,730

A low-order modeler is
usually unable to

capture the correlations
between consecutive
characters in the text

By switching to higher-
order models better

statistics can be obtained,
but the number of different

contexts increases,
consuming more space.

The average length of a word is around 5 bytes
in English texts, but the variance is relatively
high. In general, a high-order modeler needs to
use k

around 10 to capture the correlation
between 2 consecutive words.

Text

approx.50 Mbytes

Boosting compression

Antonio Fariña

Plain Text Text compressed with ETDC

k Hk contexts k Hk contexts k Hk contexts K Hk contexts

0 4.888 1 8 0.972 6,345,025 0 7.137 1 8 0.132 12,531,512

1 3.591 96 9 0.837 9,312,075 1 6.190 256 9 0.099 12,854,938

2 2.777 4,197 10 0.711 12,647,531 2 4.642 46,027 10 0.082 13,080,690

3 2.098 51,689 11 0.595 16,133,250 3 2.601 1,853,531 11 0.072 13,252,088

4 1.668 299,677 12 0.493 19,598,218 4 1.190 6,191,411 12 0.061 13,401,719

5 1.430 951,177 13 0.406 22,900,151 5 0.566 9,396,976 13 0.056 13,531,668

6 1.264 2,133,567 33 0.025 43,852,665 6 0.308 11,107,361 49 0.001 14,939,845

7 1.118 3,931,575 50 0.011 46,075,896 7 0.187 12,015,748 50 0.001 14,946,730

The average code length in ETDC is less

than 2 bytes, and the variance is low,
as codes rarely contain more than 3 bytes.

Hence a k-modeler

can capture correlations
between consecutive words with a much
smaller K.

Text

approx.50 Mbytes

Boosting compression

Antonio Fariña



However Hk

values are not directly comparable.
— ETDC (T) has approx. 1/3 of the symbols of T.
— Compressors do not use a fixed k, but rather administer in

the best way they can a given amount of memory to store
contexts.

— The correct comparison is between the entropy achieved
as a function of the number of contexts necessary to
achieve it.

Size of the
compressed

text

Size of the
compressed text +
estimation on size

for the contexts

Boosting compression

Antonio Fariña



However Hk

values are not directly comparable.
— ETDC (T) has approx. 1/3 of the symbols of T.
— Compressors do not use a fixed k, but rather administer in

the best way they can a given amount of memory to store
contexts.

— The correct comparison is between the entropy achieved
as a function of the number of contexts necessary to
achieve it.

Size of the
compressed

text

Size of the
compressed text +
estimation on size

for the contexts

Boosting compression

K = Order

Although the difference is
small, it is obtained with a

smaller k. This permits
faster and less

sophisticated modelers

Antonio Fariña

Outline



IntroductionIntroduction


RelatedRelated workwork


TextText preprocessingpreprocessing


General General PurposePurpose compressioncompression


BoostingBoosting compressioncompression


BoostingBoosting indexingindexing


Experimental Experimental resultsresults


ConclusionsConclusions

Antonio Fariña

Original Text (T)

To be or not to
be …

TH
Compressor

Compressed Text
TH(T)

Compresor
Bzip2, Gzip, PPM

00100010101

SSA or
AF-FM index

Indexed text

Boosting indexing

…|127|200|100|
255|189|25|…

Antonio Fariña



SSA (Succinct Suffix Array)
— V. Mäkinen & G. Navarro.
— Obtains a size related to H0



AF-FMindex (Alphabet-Friendly FM-index)
— P. Ferragina, G. Manzini, V. Mäkinen & G. Navarro

— Compression approaches Hk.

• We expect AF-FMindex to be successful in detecting high-order
correlations in TH(T), where a smaller k would be sufficient to
succeed compared to that built on T.

• Important because the AF-FMindex is limited in practice to obtain
entropies of relatively low k value.

Boosting indexing

Antonio Fariña



‘Self-indexes’ are able to:
— Count

the number of ocurrences of a pattern p in O(|p|) steps.

— Locate

the position of a suffix in the text.
— Recover the original text (display / extract).

Boosting indexing

Display

(TH(p))Display (p)

compress
TH

Self-Index

Snippets
around p compr

textdecompr.

TH

TH

generates suffix-free codes

 no false matchings occur

Antonio Fariña



‘Self-indexes’ are able to:
— Count

the number of ocurrences of a pattern p in O(|p|) steps.

— Locate

the position of a suffix in the text.
— Recover the original text.



We chose TH

as the base compressor because it
generates suffix-free codes.

— This permit to compress the searched pattern p

and then search
for its compressed form directly.

— As those self indexes use a terminator ($) for the indexed text,
we modified TH

to ensure that at least 1 byte value does not

appear in the compressed text.

Boosting indexing

Antonio Fariña

Outline



IntroductionIntroduction


RelatedRelated workwork


TextText preprocessingpreprocessing


General General PurposePurpose compressioncompression


BoostingBoosting compressioncompression


BoostingBoosting indexingindexing


Experimental Experimental resultsresults


ConclusionsConclusions

Antonio Fariña

Experimental results

CORPUS size (bytes) Num. words Nº different words

CALGARY 2,131,045 528,611 30,995

FT91 14,749,355 3,135,383 75,681

CR 51,085,545 10,230,907 117,713

FT92 175,449,235 36,803,204 284,892

ZIFF 185,220,215 40,866,492 237,622

FT93 197,586,294 42,063,804 291,427

FT94 203,783,923 43,335,126 295,018

AP 250,714,271 53,349,620 269,141

ALL FT 591,568,807 124,971,944 577,352

ALL 1,080,719,883 229,596,845 886,190

— Intel Pentium-IV 3 Ghz 4Gb RAM.


Debian GNU/Linux (kernel 2.4.27)


gcc 3.3.5 and optimization –O9


Time measures CPU user-time

Antonio Fariña

Experimental results
Compression ratio

Compression ratio Corpus ALL

33,66% 35,09% 25,98% 24,21% 22,34% 20,83% 24,35% 22,18% 20,90% 19,98%
0,00%
5,00%

10,00%
15,00%
20,00%
25,00%
30,00%
35,00%
40,00%

ETDC

gz
ip

bz
ip2

pp
mdi

-6
pp

mdi
-9

 m
pp

m -9
ETDC+g

zip
ETDC+b

zip
2

ETDC+p
pm

di
-6

ETDC+p
pm

di
-9

ETDC+XX

Antonio Fariña

Experimental results
Compression time

Compression time Corpus ALL

157,9175,03
336,81 599,15 636,57 118,11

216,17 448,11 470,011182,47
0,00

200,00
400,00
600,00
800,00

1000,00
1200,00
1400,00

ETDC

gz
ip

bz
ip2

pp
mdi

-6

pp
mdi

-9
 m

pp
m -9

ETDC+g
zip

ETDC+b
zip

2
ETDC+p

pm
di -6

ETDC+p
pm

di
-9

In seconds

ETDC+XX

Antonio Fariña

Experimental results
Decompression time

Decompression time Corpus ALL-FT

7,59 11,47
84,53 344,01 345,05 345,82

11,25
48,55

217,33 222,05
0,00

50,00
100,00
150,00
200,00
250,00
300,00
350,00
400,00

ETDC

gz
ip

bz
ip2

pp
mdi

-6
pp

mdi
-9

 m
pp

m -9
ETDC+gz

ip
ETDC+bz

ip2
ETDC+pp

mdi
-6

ETDC+pp
mdi

-9

In seconds

ETDC+XX

Antonio Fariña

Experimental results
Compression ratio

ppmd



Comparison against other ppm-based algorithms
that use a high value of k.

ETDC+ppmd

ppmd (k=16)

17.89% 17.00%

ppm-monst
ETDC +

ppm-monst


Monstruous ppm
(ppmd var J)
(k=128) 15.76% 15.83%

All

the

co-occurrences

of

the

symbols

in the

text

have

been

detected.

Antonio Fariña

Rank Factor 16 Sample Rate

16 32 64 1024

TH + affm 49,95% 41,84% 37,78% 34,73%

Plain + affm 104,83% 79,83% 67,33% 57,96%

TH + ssa 47,94% 43,88% 41,86% 40,33%

Plain + ssa 111,69% 99,19% 92,94% 88,25%

TH 34,31%

•We used the corpus CR (aprox 50 Mbytes)

Experimental results
Indexing

Size of index: Compression ratio (%)

Antonio Fariña

 By setting SR=1024 and RF=64…
— Less space (but slower indexes at searches)


the AF-FMindex occupies less than the text
compressed with TH

Compression ratio
TH+affm 32.71%
Plain+affm 53.59%
TH+ssa 38.37%
Plain+ssa 83.62%
TH 34.31%

Experimental results
Indexing

Antonio Fariña



For each SR value there is a line depending on the
RF values


We measured time in ms (for locate).

Experimental results
Indexing

corpus CR (aprox 50 Mbytes)

Antonio Fariña

Outline



IntroductionIntroduction


RelatedRelated workwork


TextText preprocessingpreprocessing


General General PurposePurpose compressioncompression


BoostingBoosting compressioncompression


BoostingBoosting indexingindexing


Experimental Experimental resultsresults


ConclusionsConclusions

Antonio Fariña

Conclusions



By preprocessing a text T with either ETDC or TH:
— We obtain a compressed text of around 30% of size(T).

— Still compressible and indexable.



By compressing in a second step with PPM, gzip or
bzip2, we improve: compression ratio, compression
speed, and decompression speed.
— ETDC+gzip: very fast and good compression ratio (<bzip2)

— ETDC+bzip2 compresses a little bit more, at the expense

of a lower speed.

— ETDC+PPM: the best compression (but still slow).

Antonio Fariña



If we apply the AF-FMindex and SSA over text
compressed with TH and:

— we set the index parameters in order to obtain a structure
of the same size as if we indexed the plain text, we obtain
two indexes that are much faster than the traditional ones.

— If we instead set the parameters to obtain two indexes with
the same search speed, the index over the compressed
text will occupy around 30% less than in the case of the
plain text.

Conclusions

	Guión de la exposición
	Codificaciones orientadas a palabras�Otros Usos:: DCC’08
	Slide Number 3
	Introduction �
	Introduction �
	Introduction �
	Introduction
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Semistatic compression
	Slide Number 14
	Slide Number 15
	General purpose compression
	Slide Number 17
	Boosting compression
	Boosting compression
	Boosting compression
	Boosting compression
	Boosting compression
	Boosting compression
	Slide Number 24
	Boosting indexing
	Boosting indexing
	Boosting indexing
	Boosting indexing
	Slide Number 29
	Experimental results
	Experimental results �Compression ratio
	Experimental results �Compression time
	Experimental results �Decompression time
	Experimental results �Compression ratio
	Experimental results �Indexing
	Experimental results �Indexing
	Experimental results �Indexing
	Slide Number 38
	Conclusions
	Conclusions

