Guión de la exposición

- Motivación
- Índices invertidos
- Wavelet trees
- Wavelet trees sobre códigos densos WTDC
- Arrays de sufijos
- Arrays de sufijos comprimidos
- Otros índices y trabajo futuro

• ETDC + [compresor | self-index]

Codificaciones orientadas a palabras Otros Usos:: DCC'08

Fariña, A; Navarro, G. y Parama, J. *Word-based Statistical Compressors as Natural Language Compression Boosters*. Data compression conference. Snowbird, UT. 2008.

Introduction Related work Text preprocessing General purpose compression Boosting compression Boosting indexing Experimental results Conclusions

Outline

Introduction

- We show that most of the state-of-the-art compressors (bzip2, those from the Ziv-Lempel family and the predictive PPM-based ones) **improve** their performance if:
- They compress not the original text, but its compressed representation obtained by a word-based byte-oriented statistical compressor.

Example:

- 1. Using End-Tagged Dense Code (ETDC) as a preprocessing step,
- 2. and then applying others (PPM,...)

Better performance (Compression ratio, compression speed and decompression speed than

Introduction

- It also improves text indexing.
 - Text compression has been recently integrated with text indexing.
 - Self-Indexes: It is possible to construct an index which takes space proportional to the compressed text, replaces it, and permits fast indexed searching on it.
 - Examples:
 - Succinct Suffix Array (SSA) and
 - Alphabet-Friendly FM-index (AF-FMindex)

Introduction

A self-index on the preprocessed text is **smaller** and **faster** for searching than if applied directly on T

Outline

Introduction Related work Text preprocessing General Purpose compression Boosting compression Boosting indexing Experimental results Conclusions

Related work

- There exist several works based on performing some text preprocessing before applying generalpurpose compressors.
 - *Mppm* from *Adiego and de la Fuente*
 - 1st Substitutes each original word with a 2-byte id.
 - ^{2nd} Applies PPM.
 - Word replacing transformation (Skibiński, et al., 2005)
 replace original words by codewords, which index a static dictionary (in addition to other transformations) + ppm.

- There are also some works based on building a self-index over compressed text.
- WFM-index (Ferragina, 2006) builds a FM-index onto a text compressed with Tagged Huffman.
- A simple <u>alphabet-independent</u> FM-Index (Grabowski, et al., 2006) first applies a Huffman-compression and then a Burrows-Wheeler transform over it. The resulting structure can be regarded as an FM-index built over a binary sequence.

Outline

- Introduction
- Related work
 - Text preprocessing
 - General Purpose compression
- Boosting compression
- Boosting indexing
- Experimental results
- Conclusions

Related work Text preprocessing

Semistatic compression

Statistical semistatic compression

- Association between source symbol $\leftarrow \rightarrow$ codeword does not change across the text.
- Direct search is possible.
- ETDC, TH son posibles

Tagged Huffman:

•Worse compression ratio (around 35%)

•<u>Suffix-free</u>!!!

Outline

Introduction Related work Text preprocessing General Purpose compression Boosting compression Boosting indexing Experimental results Conclusions

General purpose compression

- As a PPM compressor we chose ppmdi.
 - Uses a k-order modeler and a arithmetic encoder.
- Bzip2
 - Combines BWT, move-to-front, RLE, Huffman.
- Ziv-Lempel
 - Gzip

Outline

Introduction Related work Text preprocessing General purpose compression Boosting compression Boosting indexing Experimental results Conclusions

- The byte values obtained by compressing a text T with a word-based <u>byte-oriented</u> compressor shows that their frequencies are far from uniform.
 - The output of a word-based **arithmetic** <u>bit-oriented</u> compressor displays a rather homogeneous distribution.

- This idea led us to consider that the compressed file ETDC(T) (or TH(T)) was still compressible with a charbased bit-oriented compressor.
- However, this could not be a zero-order compressor, because the zero-order entropy (H_0) of ETDC(T) is too high (around 7 bpc).
- Instead, a deeper study of *k*-order entropy (H_k) of both *T* and *ETDC(T)* exposed some interesting properties of *ETDC*.
 - A k-order modeler gathers statistics of each symbol c_i by looking at the k symbols that precede c_i

Text approx.50 Mbytes

Plain Text						Text compressed with ETDC							
k	H _k	contexts	k		H _k	contexts	k	H _k	contexts	к	H _k	c	ontexts
0	4.888	1	8	0.972		6,345,025	0	7.137	1	8	0.132	12,5	531,512
1	3.591	96	9	0.837		9,312,075	1	6.190	256	9	0.099	12,8	354,938
2	2.777	4,197	10	0.711		12,647,531)	4.642	46,027	10	0.082	13,0	080,690
3	2.098	51,689	11	0.595		16,133,250	3	2.601	1,853,531	11	0.072	13,2	252,088
4	1.668	299,677	12	0.493		19,598,218	4	1.190	6,191,411	12	0.061	13,4	401,719
5	1.430	951,177	13	0.406		22,900,151	5	0.566	9,396,976	13	0.056	13,5	531,668
6	1.264	2,133,567	* 33_	0.025		43,852,665	6	0.808	11,107,361	49	0.001	14,9	939,845
7	1.118	3,931,575	50	0.011		4 6,0 75,896	7	0.187	12,015,748	50	0.001	14,9	946,730

A low-order modeler is usually unable to capture the correlations between consecutive characters in the text By switching to higherorder models better statistics can be obtained, but the number of different contexts increases, consuming more space. The average length of a word is around 5 bytes in English texts, but the variance is relatively high. In general, a high-order modeler needs to use <u>*k* around 10</u> to capture the correlation between <u>2 consecutive words</u>.

Text approx.50 Mbytes

	Plain Text						Text compressed with ETDC					
k	H _k	contexts	k	H_k	contexts	k	H _k	contexts	к	H _k	contexts	
0	4.888	1	8	0.972	6,345,025	0	7.137	1	8	0.132	12,531,512	
1	3.591	96	9	0.837	9,312,075	1	6.190	256	9	0.099	12,854,938	
2	2.777	4,197	10	0.711	12,647,531	2	4.642	46,027	10	0.082	13,080,690	
3	2.098	51,689	11	0.595	16,133,250	3	2.601	1,853,531	11	0.072	13,252,088	
4	1.668	299,677	12	0.493	19,598,218	4	1.190	6,191,411	12	0.061	13,401,719	
5	1.430	951,177	13	0.406	22,900,151	5	0.566	9,396,976	13	0.056	13,531,668	
6	1.264	2,133,567	33	0.025	43,852,665	6	0.308	11,107,361	49	0.001	14,939,845	
7	1.118	3,931,575	50	0.011	46,075,896	7	0.187	12,015,748	50	0.001	14,946,730	

The average code length in ETDC is less than **2 bytes**, and the variance is low, as codes rarely contain more than 3 bytes. Hence a *k-modeler* can capture correlations between consecutive words with a **much smaller K**.

- However H_k values are not directly comparable.
 - ETDC (T) has approx. 1/3 of the symbols of T.
 - Compressors do not use a fixed k, but rather administer in the best way they can a given amount of memory to store contexts.
 - The correct comparison is between the entropy achieved as a function of the number of contexts necessary to achieve it.

- Introduction
- Related work
 - Text preprocessing
 - General Purpose compression
- Boosting compression
- Boosting indexing
- Experimental results
- Conclusions

Indexed text

- SSA (Succinct Suffix Array)
 - V. Mäkinen & G. Navarro.
 - Obtains a size related to H_0
- AF-FMindex (Alphabet-Friendly FM-index)
 - P. Ferragina, G. Manzini, V. Mäkinen & G. Navarro
 - Compression approaches $H_{k.}$
 - We expect <u>AF-FMindex</u> to be successful in detecting high-order correlations in TH(T), where a **smaller** k would be sufficient to succeed compared to that built on T.
 - Important because the AF-FMindex is limited in practice to obtain entropies of relatively low k value.

- Self-indexes' are able to:
 - *Count* the number of ocurrences of a pattern p in O(|p|) steps.
 - *Locate* the position of a suffix in the text.
 - Recover the original text (display / extract).

TH generates suffix-free codes \rightarrow no false matchings occur

- Self-indexes' are able to:
 - Count the number of ocurrences of a pattern p in O(|p|) steps.
 - Locate the position of a suffix in the text.
 - Recover the original text.
- We chose TH as the base compressor because it generates suffix-free codes.
 - This permit to compress the searched pattern *p* and then search for its compressed form directly.
 - As those self indexes use a terminator (\$) for the indexed text, we modified *TH* to ensure that at least 1 byte value does not appear in the compressed text.

Introduction Related work Text preprocessing General Purpose compression Boosting compression Boosting indexing Experimental results Conclusions

Experimental results

STOLLO1

<u>CORPUS</u>	<u>size (bytes)</u>	<u>Num. words</u>	<u>Nº different words</u>
CALGARY	2,131,045	528,611	30,995
FT91	14,749,355	3,135,383	75,681
CR	51,085,545	10,230,907	117,713
FT92	175,449,235	36,803,204	284,892
ZIFF	185,220,215	40,866,492	237,622
FT93	197,586,294	42,063,804	291,427
FT94	203,783,923	43,335,126	295,018
AP	250,714,271	53,349,620	269,141
ALL FT	591,568,807	124,971,944	577,352
ALL	1,080,719,883	229,596,845	886,190

- Intel Pentium-IV 3 Ghz 4Gb RAM.
 - Debian GNU/<u>Linux</u> (kernel 2.4.27)
 - gcc 3.3.5 and optimization <u>–O9</u>
 - Time measures <u>CPU user-time</u>

Experimental results Compression ratio

Experimental results Compression time

In seconds

Experimental results Decompression time

In seconds

Experimental results Compression ratio

Comparison against other ppm-based algorithms that use a high value of k.

Monstruous ppmETDC +(ppmd var J)ppm-monst(k=128)15.76%

All the co-occurrences of the symbols in the text have been detected.

Experimental results Indexing

•We used the corpus CR (aprox 50 Mbytes)

Size of index: Compression ratio (%)

Rank Factor 16	Sample Rate						
	16	32	64	1024			
TH + affm	49,95%	41,84%	37,78%	34,73%			
Plain + affm	104,83%	79,83%	67,33%	57,96%			
TH + ssa	47,94%	43,88%	41,86%	40,33%			
Plain + ssa	111,69%	99,19%	92,94%	88,25%			
тн	34,31%						

Experimental results Indexing

By setting SR=1024 and RF=64...

- —Less space (but slower indexes at searches)
 - the AF-FMindex occupies less than the text compressed with TH

Compression ratio				
TH+affm	32.71%			
Plain+affm	53.59%			
TH+ssa	38.37%			
Plain+ssa	83.62%			
ТН	34.31%			

Experimental results Indexing

- For each SR value there is a line depending on the **RF** values
- We measured time in ms (for locate).

Outline

Introduction Related work Text preprocessing General Purpose compression Boosting compression Boosting indexing Experimental results Conclusions

Conclusions

- By preprocessing a text T with either ETDC or TH:
 - We obtain a compressed text of around 30% of size(T).
 - Still compressible and indexable.
- By compressing in a <u>second step</u> with PPM, gzip or bzip2, we improve: compression ratio, compression speed, and decompression speed.
 - ETDC+gzip: very fast and good compression ratio (<bzip2)</p>
 - ETDC+bzip2 compresses a little bit more, at the expense of a lower speed.
 - ETDC+PPM: the best compression (but still slow).

Conclusions

If we apply the AF-FMindex and SSA over text compressed with TH and:

- we set the index parameters in order to obtain a structure of the same size as if we indexed the plain text, we obtain two indexes that are much faster than the traditional ones.
- If we instead set the parameters to obtain two indexes with the same search speed, the index over the compressed text will occupy around 30% less than in the case of the plain text.