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
 

Motivación

Guión de la exposición


 

Wavelet trees


 

Wavelet trees sobre códigos densos WTDC  


 

Arrays de sufijos


 

Arrays de sufijos comprimidos


 

Otros índices y trabajo futuro


 

Índices invertidos

• ETDC + [compresor | self-index]
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
 

We show that most of the state-of-the-art compressors 
(bzip2, those from the Ziv-Lempel family and the 
predictive PPM-based ones) improve their 
performance if:

— They compress not the original text, but its compressed 
representation obtained by a word-based byte-oriented 
statistical compressor.


 

Example:
1. Using End-Tagged Dense Code (ETDC) as a 

preprocessing step,
2. and then applying others (PPM,…)

Introduction
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Original Text (T)

Introduction

To be or not to 
be …

ETDC, TH
Compressor

…|127|200|100| 
255|189|25|…

Compressed Text
ETDC(T), TH(T)

Bzip2, Gzip, PPM
Compressor

00100010101
Final Compressed Text

X(ETDC(T))

ALTERNATIVE 
representation of

the text
Byte oriented 
compression

To be or not to 
be …

Bzip2, Gzip, PPM
Compressor 00100010101

X(T)

Better performance (Compression ratio, compression speed and decompression speed
than

Original Text (T)
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
 

It also improves text indexing.

— Text compression has been recently integrated with text 

indexing.

— Self-Indexes: It is possible to construct an index which takes 

space proportional to the compressed text, replaces it, and 

permits fast indexed searching on it.

— Examples: 


 

Succinct Suffix Array (SSA) and


 

Alphabet-Friendly FM-index (AF-FMindex)

Introduction
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Original Text (T)

Introduction

To be or not to 
be …

TH
Compressor

…|127|200|100| 
255|189|25|…

Compressed Text
TH(T)

Compresor 
Bzip2, Gzip, PPM

00100010101ALTERNATIVE 
representation of

the text

SSA or
AF-FM index

Indexed text

Byte oriented 
compression

A self-index on the preprocessed text is smaller and faster for searching 
than if applied directly on T
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
 

There exist several works based on performing 
some text preprocessing

 
before applying general-

 purpose compressors.

— Mppm
 

from Adiego
 

and de la Fuente


 
1st Substitutes each original word with a 2-byte id.


 
2nd Applies PPM.

— Word replacing transformation
 

(Skibiński, et al., 2005) 
replace original words by codewords, which index a static 
dictionary (in addition to other transformations) + ppm.

— …

Related work
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
 

There are also some works based on building a  
self-index over compressed text.

— WFM-index
 

(Ferragina, 2006) builds a FM-index onto a text 
compressed with Tagged Huffman.

— A simple alphabet-independent
 

FM-Index
 

(Grabowski, et 
al., 2006) first applies a Huffman-compression and then a 
Burrows-Wheeler transform over it. The resulting structure 
can be regarded as an FM-index built over a binary 
sequence.

Related work
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Related work 
Text preprocessing

Original Text (T)

To be or not to 
be …

ETDC, TH
Compressor

00000000 
11111111

Compressed Text
ETDC(T), TH(T)…

Bzip2, Gzip, PPM
Compressor

00100010101
Final Compressed Text

X(ETDC(T))

…|127|200|100| 
255|189|25|…
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Semistatic compression


 

Statistical semistatic compression

— Association between source symbol  codeword

does not change across the text.

— Direct search is possible.

— ETDC, TH son posibles

Tagged Huffman:
•Worse

 
compression

 
ratio (around

 
35%)

•Suffix-free!!!



Antonio Fariña

Outline



 
IntroductionIntroduction


 
RelatedRelated workwork


 

TextText preprocessingpreprocessing


 

General General PurposePurpose compressioncompression


 
BoostingBoosting compressioncompression


 
BoostingBoosting indexingindexing


 
Experimental Experimental resultsresults


 
ConclusionsConclusions



Antonio Fariña

Related work 
General purpose compression

Original Text (T)

To be or not to 
be …

ETDC, TH
Compressor

Compressed Text
ETDC(T), TH(T)…

Bzip2, Gzip, PPM
Compressor

00100010101
Final Compressed Text

X(ETDC(T))

…|127|200|100| 
255|189|25|…
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General purpose compression


 

As a PPM compressor we chose ppmdi. 
— Uses a k-order modeler and a arithmetic encoder.


 

Bzip2 
— Combines BWT, move-to-front, RLE, Huffman.


 

Ziv-Lempel
— Gzip
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Boosting compression


 

The byte values obtained by compressing a text T
 with a word-based byte-oriented compressor shows 

that their frequencies are far from uniform.


 
The output of a word-based arithmetic bit-oriented 
compressor displays a rather homogeneous 
distribution.
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
 

This idea led us to consider that the compressed file 
ETDC(T)

 
(or TH(T)) was still compressible with a char- 

based bit-oriented compressor.


 

However, this could not be a zero-order compressor, 
because the zero-order entropy (H0

 

) of ETDC(T)
 

is too high 
(around 7 bpc).


 

Instead, a deeper study of k-order entropy (Hk

 

) of both T
 and ETDC(T)

 
exposed some interesting properties of 

ETDC.
— A k-order modeler gathers statistics of each symbol ci

 

by 
looking at the k

 
symbols that precede ci

Boosting compression
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Plain Text Text compressed with ETDC

k Hk contexts k Hk contexts k Hk contexts K Hk contexts

0 4.888 1 8 0.972 6,345,025 0 7.137 1 8 0.132 12,531,512

1 3.591 96 9 0.837 9,312,075 1 6.190 256 9 0.099 12,854,938 

2 2.777 4,197 10 0.711 12,647,531 2 4.642 46,027 10 0.082 13,080,690 

3 2.098 51,689 11 0.595 16,133,250 3 2.601 1,853,531 11 0.072 13,252,088

4 1.668 299,677 12 0.493 19,598,218 4 1.190 6,191,411 12 0.061 13,401,719 

5 1.430 951,177 13 0.406 22,900,151 5 0.566 9,396,976 13 0.056 13,531,668 

6 1.264 2,133,567 33 0.025 43,852,665 6 0.308 11,107,361 49 0.001 14,939,845 

7 1.118 3,931,575 50 0.011 46,075,896 7 0.187 12,015,748 50 0.001 14,946,730

A low-order modeler is 
usually unable to 

capture the correlations 
between consecutive 
characters in the text

By switching to higher- 
order models better 

statistics can be obtained, 
but the number of different 

contexts increases, 
consuming more space.

The average length of a word is around 5 bytes 
in English texts, but the variance is relatively 
high. In general, a high-order modeler needs to 
use k

 

around 10 to capture the correlation 
between 2 consecutive words. 

Text

 

approx.50 Mbytes

Boosting compression
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Plain Text Text compressed with ETDC

k Hk contexts k Hk contexts k Hk contexts K Hk contexts

0 4.888 1 8 0.972 6,345,025 0 7.137 1 8 0.132 12,531,512

1 3.591 96 9 0.837 9,312,075 1 6.190 256 9 0.099 12,854,938 

2 2.777 4,197 10 0.711 12,647,531 2 4.642 46,027 10 0.082 13,080,690 

3 2.098 51,689 11 0.595 16,133,250 3 2.601 1,853,531 11 0.072 13,252,088

4 1.668 299,677 12 0.493 19,598,218 4 1.190 6,191,411 12 0.061 13,401,719 

5 1.430 951,177 13 0.406 22,900,151 5 0.566 9,396,976 13 0.056 13,531,668 

6 1.264 2,133,567 33 0.025 43,852,665 6 0.308 11,107,361 49 0.001 14,939,845 

7 1.118 3,931,575 50 0.011 46,075,896 7 0.187 12,015,748 50 0.001 14,946,730

The average code length in ETDC is less 

than  2 bytes, and the variance is low, 
as codes rarely contain more than 3 bytes.

Hence a k-modeler

 

can capture correlations 
between consecutive words with a  much 
smaller K.

Text

 

approx.50 Mbytes

Boosting compression
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
 

However Hk
 

values are not directly comparable.
— ETDC (T) has approx. 1/3 of the symbols of T.
— Compressors do not use a fixed k, but rather administer in 

the best way they can a given amount of memory to store 
contexts.

— The correct comparison is between the entropy achieved 
as a function of the number of contexts necessary to 
achieve it.

Size of the 
compressed 

text

Size of the 
compressed text + 
estimation on size 

for the contexts

Boosting compression
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
 

However Hk
 

values are not directly comparable.
— ETDC (T) has approx. 1/3 of the symbols of T.
— Compressors do not use a fixed k, but rather administer in 

the best way they can a given amount of memory to store 
contexts.

— The correct comparison is between the entropy achieved 
as a function of the number of contexts necessary to 
achieve it.

Size of the 
compressed 

text

Size of the 
compressed text + 
estimation on size 

for the contexts

Boosting compression

K = Order

Although the difference is 
small, it is obtained with a 

smaller k. This permits 
faster and less 

sophisticated modelers
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Original Text (T)

To be or not to 
be …

TH
Compressor

Compressed Text
TH(T)

Compresor 
Bzip2, Gzip, PPM

00100010101

SSA or
AF-FM index

Indexed text

Boosting indexing

…|127|200|100| 
255|189|25|…
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
 

SSA (Succinct Suffix Array)
— V. Mäkinen & G. Navarro. 
— Obtains a size related to H0


 

AF-FMindex (Alphabet-Friendly FM-index)
— P. Ferragina, G. Manzini, V. Mäkinen &  G. Navarro 

— Compression approaches Hk.

• We expect AF-FMindex to be successful in detecting high-order 
correlations in TH(T), where a smaller k would be sufficient to 
succeed compared to that built on T.

• Important because the AF-FMindex is limited in practice to obtain 
entropies of relatively low k value.

Boosting indexing
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
 

‘Self-indexes’ are able to:
— Count

 
the number of ocurrences of a pattern p in O(|p|) steps.

— Locate
 

the position of a suffix in the text.
— Recover the original text (display / extract).

Boosting indexing

Display
 

( TH(p) )Display (p)

compress
TH

Self-Index

Snippets 
around p compr

 
textdecompr.

TH

TH
 

generates suffix-free codes
 

 no false matchings occur



Antonio Fariña


 

‘Self-indexes’ are able to:
— Count

 
the number of ocurrences of a pattern p in O(|p|) steps.

— Locate
 

the position of a suffix in the text.
— Recover the original text.


 

We chose TH
 

as the base compressor because it 
generates suffix-free codes.

— This permit to compress the searched pattern p
 

and then search 
for its compressed form directly.

— As those self indexes use a terminator ($) for the indexed text, 
we modified TH

 
to ensure that at least 1 byte value does not 

appear in the compressed text. 

Boosting indexing



Antonio Fariña

Outline



 
IntroductionIntroduction


 
RelatedRelated workwork


 

TextText preprocessingpreprocessing


 

General General PurposePurpose compressioncompression


 
BoostingBoosting compressioncompression


 
BoostingBoosting indexingindexing


 
Experimental Experimental resultsresults


 
ConclusionsConclusions



Antonio Fariña

Experimental results

CORPUS size (bytes) Num. words Nº different words

CALGARY 2,131,045 528,611 30,995

FT91 14,749,355 3,135,383 75,681

CR 51,085,545 10,230,907 117,713

FT92 175,449,235 36,803,204 284,892

ZIFF 185,220,215 40,866,492 237,622

FT93 197,586,294 42,063,804 291,427

FT94 203,783,923 43,335,126 295,018

AP 250,714,271 53,349,620 269,141

ALL FT 591,568,807 124,971,944 577,352

ALL 1,080,719,883 229,596,845 886,190

— Intel Pentium-IV 3 Ghz 4Gb RAM. 


 
Debian GNU/Linux (kernel 2.4.27)


 
gcc 3.3.5 and optimization –O9


 
Time measures CPU user-time
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Experimental results 
Compression ratio

Compression ratio Corpus ALL

33,66% 35,09% 25,98% 24,21% 22,34% 20,83% 24,35% 22,18% 20,90% 19,98%
0,00%
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ETDC+XX
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Experimental results 
Compression time

Compression time Corpus ALL

157,9175,03
336,81 599,15 636,57 118,11

216,17 448,11 470,011182,47
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Experimental results 
Decompression time

Decompression time Corpus ALL-FT

7,59 11,47
84,53 344,01 345,05 345,82

11,25
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Experimental results 
Compression ratio

ppmd


 

Comparison against other ppm-based algorithms 
that use a high value of k.

ETDC+ppmd
 

ppmd (k=16)

17.89% 17.00%

ppm-monst
ETDC  +

ppm-monst


 
Monstruous ppm
(ppmd var J)
(k=128) 15.76% 15.83%

All

 

the

 

co-occurrences

 

of

 

the

 

symbols

 

in the

 

text

 

have

 

been

 

detected.
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Rank Factor 16 Sample Rate

16 32 64 1024

TH    + affm 49,95% 41,84% 37,78% 34,73%

Plain + affm 104,83% 79,83% 67,33% 57,96%

TH    +  ssa 47,94% 43,88% 41,86% 40,33%

Plain +  ssa 111,69% 99,19% 92,94% 88,25%

TH 34,31%

•We used the corpus CR (aprox 50 Mbytes)

Experimental results 
Indexing

Size of index: Compression ratio (%)
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  By setting SR=1024 and RF=64…
— Less space (but slower indexes at searches)


 
the AF-FMindex occupies less than the text 
compressed with TH 

Compression ratio
TH+affm 32.71%
Plain+affm 53.59%
TH+ssa 38.37%
Plain+ssa 83.62%
TH 34.31%

Experimental results 
Indexing
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
 

For each SR value there is a line depending on the 
RF values


 
We measured time in ms (for locate).

Experimental results 
Indexing

corpus CR (aprox 50 Mbytes)
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Conclusions


 

By preprocessing a text T with either ETDC or TH:
— We obtain a compressed text of around 30% of size(T).

— Still compressible and indexable.


 

By compressing in a second step with PPM, gzip or 
bzip2, we improve: compression ratio, compression 
speed, and decompression speed.
— ETDC+gzip: very fast and good compression ratio (<bzip2)

— ETDC+bzip2 compresses a little bit more, at the expense 

of a lower speed.

— ETDC+PPM: the best compression (but still slow).
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
 

If we apply the AF-FMindex and SSA over text 
compressed with TH and:

— we set the index parameters in order to obtain a structure 
of the same size as if we indexed the plain text, we obtain 
two indexes that are much faster than the traditional ones. 

— If we instead set the parameters to obtain two indexes with 
the same search speed, the index over the compressed 
text will occupy around 30% less than in the case of the 
plain text.

Conclusions
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